Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Nat Commun ; 15(1): 3042, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589358

RESUMO

The development of an effective survival prediction tool is key for reducing colorectal cancer mortality. Here, we apply a three-stage study to devise a polygenic prognostic score (PPS) for stratifying colorectal cancer overall survival. Leveraging two cohorts of 3703 patients, we first perform a genome-wide survival association analysis to develop eight candidate PPSs. Further using an independent cohort with 470 patients, we identify the 287 variants-derived PPS (i.e., PPS287) achieving an optimal prediction performance [hazard ratio (HR) per SD = 1.99, P = 1.76 × 10-8], accompanied by additional tests in two external cohorts, with HRs per SD of 1.90 (P = 3.21 × 10-14; 543 patients) and 1.80 (P = 1.11 × 10-9; 713 patients). Notably, the detrimental impact of pathologic characteristics and genetic risk could be attenuated by a healthy lifestyle, yielding a 7.62% improvement in the 5-year overall survival rate. Therefore, our findings demonstrate the integrated contribution of pathologic characteristics, germline variants, and lifestyle exposure to the prognosis of colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Fatores de Risco , Estilo de Vida
2.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579623

RESUMO

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , Imunoensaio , Metais
3.
Diagnostics (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611660

RESUMO

Clustered ring enhancement (CRE) is a new lexicon for non-mass enhancement (NME) of breast MR in the 5th BIRADS, indicating a high suspicion of malignancy. We wonder if the presence of CRE correlates with expression of prognostic molecular biomarkers of breast cancer. A total of 58 breast lesions, which MRI reported with NME, were collected between July 2013 and December 2018. The patterns of enhancement including CRE were reviewed and the pathological results with expression of molecular biomarkers were collected. The association between MRI NME, pathological, and IHC stain findings were investigated under univariate analysis. A total of 58 breast lesions were pathologically proven to have breast cancer, comprising 31 lesions with CRE and 27 lesions without CRE on breast MRI. The expression of the estrogen receptor (ER) (p = 0.017) and the progesterone receptor (PR) (p = 0.017) was significantly lower in lesions with CRE as compared with those without CRE. The expression of Ki-67 (≥25%) was significantly higher in lesions with CRE (p = 0.046). The lesions with CRE had a lower expression ratio of ER (50.71 ± 45.39% vs. 74.26 ± 33.59%, p = 0.028). Our study indicated that lesions with CRE may possess different features from those without CRE in molecular expression, bearing a more aggressive behavior.

4.
J Transl Med ; 22(1): 366, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632662

RESUMO

BACKGROUND: Early-onset prostate cancer (EOPC, ≤ 55 years) has a unique clinical entity harboring high genetic risk, but the majority of EOPC patients still substantial opportunity to be early-detected thus suffering an unfavorable prognosis. A refined understanding of age-based polygenic risk score (PRS) for prostate cancer (PCa) would be essential for personalized risk stratification. METHODS: We included 167,517 male participants [4882 cases including 205 EOPC and 4677 late-onset PCa (LOPC)] from UK Biobank. A General-, an EOPC- and an LOPC-PRS were derived from age-specific genome-wide association studies. Weighted Cox proportional hazard models were applied to estimate the risk of PCa associated with PRSs. The discriminatory capability of PRSs were validated using time-dependent receiver operating characteristic (ROC) curves with additional 4238 males from PLCO and TCGA. Phenome-wide association studies underlying Mendelian Randomization were conducted to discover EOPC linking phenotypes. RESULTS: The 269-PRS calculated via well-established risk variants was more strongly associated with risk of EOPC [hazard ratio (HR) = 2.35, 95% confidence interval (CI) 1.99-2.78] than LOPC (HR = 1.95, 95% CI 1.89-2.01; I2 = 79%). EOPC-PRS was dramatically related to EOPC risk (HR = 4.70, 95% CI 3.98-5.54) but not to LOPC (HR = 0.98, 95% CI 0.96-1.01), while LOPC-PRS had similar risk estimates for EOPC and LOPC (I2 = 0%). Particularly, EOPC-PRS performed optimal discriminatory capability for EOPC (area under the ROC = 0.613). Among the phenomic factors to PCa deposited in the platform of ProAP (Prostate cancer Age-based PheWAS; https://mulongdu.shinyapps.io/proap ), EOPC was preferentially associated with PCa family history while LOPC was prone to environmental and lifestyles exposures. CONCLUSIONS: This study comprehensively profiled the distinct genetic and phenotypic architecture of EOPC. The EOPC-PRS may optimize risk estimate of PCa in young males, particularly those without family history, thus providing guidance for precision population stratification.


Assuntos
60488 , Neoplasias da Próstata , Humanos , Masculino , Estudo de Associação Genômica Ampla , Estudos de Coortes , Fatores de Risco , Predisposição Genética para Doença
5.
Arch Toxicol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662237

RESUMO

Tobacco carcinogens metabolism-related genes (TCMGs) could generate reactive metabolites of tobacco carcinogens, which subsequently contributed to multiple diseases. However, the association between genetic variants in TCMGs and bladder cancer susceptibility remains unclear. In this study, we derived TCMGs from metabolic pathways of polycyclic aromatic hydrocarbons and tobacco-specific nitrosamines, and then explored genetic associations between TCMGs and bladder cancer risk in two populations: a Chinese population of 580 cases and 1101 controls, and a European population of 5930 cases and 5468 controls, along with interaction and joint analyses. Expression patterns of TCMGs were sourced from Nanjing Bladder Cancer (NJBC) study and publicly available datasets. Among 43 TCMGs, we observed that rs7087341 T > A in AKR1C2 was associated with a reduced risk of bladder cancer in the Chinese population [odds ratio (OR) = 0.84, 95% confidence interval (CI) = 0.72-0.97, P = 1.86 × 10-2]. Notably, AKR1C2 rs7087341 showed an interaction effect with cigarette smoking on bladder cancer risk (Pinteraction = 5.04 × 10-3), with smokers carrying the T allele increasing the risk up to an OR of 3.96 (Ptrend < 0.001). Genetically, rs7087341 showed an allele-specific transcriptional regulation as located at DNA-sensitive regions of AKR1C2 highlighted by histone markers. Mechanistically, rs7087341 A allele decreased AKR1C2 expression, which was highly expressed in bladder tumors that enhanced metabolism of tobacco carcinogens, and thereby increased DNA adducts and reactive oxygen species formation during bladder tumorigenesis. These findings provided new insights into the genetic mechanisms underlying bladder cancer.

7.
J Med Chem ; 67(7): 5275-5304, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38477974

RESUMO

CBP/p300 proteins are key epigenetic regulators and promising targets for the treatment of castration-resistant prostate cancer and other types of human cancers. Herein, we report the discovery and characterization of CBPD-268 as an exceptionally potent, effective, and orally efficacious PROTAC degrader of CBP/p300 proteins. CBPD-268 induces CBP/p300 degradation in three androgen receptor-positive prostate cancer cell lines, with DC50 ≤ 0.03 nM and Dmax > 95%, leading to potent cell growth inhibition. It has an excellent oral bioavailability in mice and rats. Oral administration of CBPD-268 at 0.3-3 mg/kg resulted in profound and persistent CBP/p300 depletion in tumor tissues and achieved strong antitumor activity in the VCaP and 22Rv1 xenograft tumor models in mice, including tumor regression in the VCaP tumor model. CBPD-268 was well tolerated in mice and rats and displayed a therapeutic index of >10. Taking these results together, CBPD-268 is a highly promising CBP/p300 degrader as a potential new cancer therapy.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Ratos , Animais , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Proteínas , Proliferação de Células
8.
J Med Chem ; 67(7): 5351-5372, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530938

RESUMO

CBP/p300 are critical transcriptional coactivators of the androgen receptor (AR) and are promising cancer therapeutic targets. Herein, we report the discovery of highly potent, selective, and orally bioavailable CBP/p300 degraders using the PROTAC technology with CBPD-409 being the most promising compound. CBPD-409 induces robust CBP/p300 degradation with DC50 0.2-0.4 nM and displays strong antiproliferative effects with IC50 1.2-2.0 nM in the VCaP, LNCaP, and 22Rv1 AR+ prostate cancer cell lines. It has a favorable pharmacokinetic profile and achieves 50% of oral bioavailability in mice. A single oral administration of CBPD-409 at 1 mg/kg achieves >95% depletion of CBP/p300 proteins in the VCaP tumor tissue. CBPD-409 exhibits strong tumor growth inhibition and is much more potent and efficacious than two CBP/p300 inhibitors CCS1477 and GNE-049 and the AR antagonist Enzalutamide. CBPD-409 is a promising CBP/p300 degrader for further extensive evaluations for the treatment of advanced prostate cancer and other types of human cancers.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linhagem Celular Tumoral
9.
Mater Horiz ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497122

RESUMO

H2O2 production via the two-electron oxygen reduction reaction (2e- ORR) offers a potential alternative to the current anthraquinone method owing to its efficiency and environmental friendliness. However, it is necessary to determine the structures of electrocatalysts with cost-effectiveness and high efficiency for future industrialization demand. Herein, a supramolecular catalyst composed of cobalt-phthalocyanine on a near-monodispersed and oxidized single-walled carbon nanotube (CoPc/o-SWCNT) was synthesized via a solution self-assembly method for catalyzing the 2e- ORR for H2O2 electrosynthesis. Benefiting from the enhanced intermolecular interaction by introducing oxygen functional groups on o-SWCNTs, the oxidation states of single-atom Co sites were tuned via the formation of two extra Co-O bonds. Coupled with structural characterizations, density-functional theory (DFT) calculations reveal that the depressed d-band center of the Co site regulated by two axially-bridged O atoms gives rise to a suitable binding strength of oxygen intermediates (*OOH) to favor the 2e- ORR. Thus, the CoPc-6wt%/o-SWCNT-2 catalyst with optimized synthetic parameters delivers competitive 2e- ORR performance for H2O2 electrosynthesis in a neutral electrolyte (pH = 7), including enhanced H2O2 generation, satisfactory molar selectivity of ∼83-95% and long-period stability (75 h) in H-cell measurement. Moreover, it could also be boosted to show a high current of 45 mA cm-2, recorded turnover frequency of 25.3 ± 0.5 s-1 and maximum H2O2 production rate of 5.85 mol g-1 h-1 with a continuous H2O2 accumulation of 1.2 wt% in a flow-cell device, which outperformed most of the reported neutral-selective nonprecious metal single-atom catalysts.

10.
Toxicology ; 504: 153782, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493947

RESUMO

Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.

11.
J Transl Autoimmun ; 8: 100234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38405661

RESUMO

The biliary epithelial cells release CC chemokine receptor 6 (CCR6) ligand 20 (CCL20), leading to recruitment of CCR6+ T cells and subsequent infiltration into the biliary epithelium in primary biliary cholangitis patients. Previous genome-wide multi-national meta-analysis, including our Han Chinese cohort, showed significant association of CCR6 and CCL20 single nucleotide polymorphisms (SNP) with PBC. We report here that significantly associated SNPs, identified in the CCR6 locus based on our Han Chinese genome-wide association study, can be separated into "protective" and "risk" groups, but only "risk" SNPs were confirmed using a separate Han Chinese PBC cohort. Only weak association of CCL20 SNPs was observed in Han Chinese PBC cohorts. Fine-mapping and logistical analysis identified a previously defined functional variant that, leads to increased CCR6 expression, which contributed to increased genetic susceptibility to PBC in Han Chinese cohort.

12.
J Biomed Res ; 38(2): 149-162, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38410974

RESUMO

Genetic variants in super-enhancers (SEs) are increasingly implicated as a disease risk-driving mechanism. Previous studies have reported an associations between benzo[a]pyrene (BaP) exposure and some malignant tumor risk. Currently, it is unclear whether BaP is involved in the effect of genetic variants in SEs on prostate cancer risk, nor the associated intrinsic molecular mechanisms. In the current study, by using logistic regression analysis, we found that rs5750581T>C in 22q-SE was significantly associated with prostate cancer risk (odds ratio = 1.26, P = 7.61 × 10 -5). We also have found that the rs6001092T>G, in a high linkage disequilibrium with rs5750581T>C ( r 2 = 0.98), is located in a regulatory aryl hydrocarbon receptor (AhR) motif and may interact with the FAM227A promoter in further bioinformatics analysis. We then performed a series of functional and BaP acute exposure experiments to assess biological function of the genetic variant and the target gene. Biologically, the rs6001092-G allele strengthened the transcription factor binding affinity to AhR, thereby upregulating FAM227A, especially upon exposure to BaP, which induced the malignant phenotypes of prostate cancer. The current study highlights that AhR acts as an environmental sensor of BaP and is involved in the SE-mediated prostate cancer risk, which may provide new insights into the etiology of prostate cancer associated with the inherited SE variants under environmental carcinogen stressors.

13.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335265

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant breast cancer, with high rates of relapse and metastasis. Because of the nonspecific targeting of chemotherapy and insurmountable aggressiveness, TNBC therapy lacks an effective strategy. Exosomes have been reported as an efficient drug delivery system (DDS). CD82 is a tumor metastasis inhibitory molecule that is enriched in exosomes. Aptamer AS1411 specifically targets TNBC cells due to its high expression of nucleolin. We generated a "triple-punch" cell membrane-derived exosome-mimetic nanovesicle system that integrated with CD82 overexpression, AS1411 conjugation, and doxorubicin (DOX) delivery. CD82 enrichment effectively inhibits the migration of TNBC cells. AS1411 conjugation specifically targets TNBC cells. DOX loading effectively inhibits proliferation and induces apoptosis of TNBC cells. Our results demonstrate a system of exosome-mimetic nanovesicles with "triple-punch" that may facilitate TNBC therapeutics.

14.
Environ Toxicol ; 39(5): 2782-2793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270278

RESUMO

Cigarette smoking was known to accelerate the occurrence and development of bladder cancer by regulating RNA modification. However, the association between the combination of cigarette smoking and RNA modification-related single nucleotide polymorphisms (RNAm-SNPs) and bladder cancer risk remains unclear. In this study, 1681 participants, including 580 cases and 1101 controls, were recruited for genetic association analysis. In total, 1 287 990 RNAm-SNPs involving nine RNA modifications (m6A, m1A, m6Am, 2'-O-Me, m5C, m7G, A-to-I, m5U, and pseudouridine modification) were obtained from the RMVar database. The interactive effect of cigarette smoking and RNAm-SNPs on bladder cancer risk was assessed through joint analysis. The susceptibility analysis revealed that 89 RNAm-SNPs involving m6A, m1A, and A-to-I modifications were associated with bladder cancer risk. Among them, m6A-related rs2273058 in CRNKL1 was associated with bladder cancer risk (odds ratios (OR) = 1.35, padj = 1.78 × 10-4), and CRNKL1 expression was increased in bladder cancer patients (p = 0.035). Cigarette smoking combined with the A allele of rs2273058 increased bladder cancer risk compared with nonsmokers with the G allele of rs2273058 (OR = 2.40, padj = 3.11 × 10-9). Mechanistically, the A allele of rs2273058 endowed CRNKL1 with an additional m6A motif, facilitating recognition by m6A reader IGF2BP1, thereby promoting CRNKL1 expression under cigarette smoking (r = 0.142, p = 0.017). Moreover, elevated CRNKL1 expression may accelerate cell cycle and proliferation, thereby increasing bladder cancer risk. In summary, our study demonstrated that cigarette smoking combined with RNAm-SNPs contributes to bladder cancer risk, which provides a potential target for bladder cancer prevention.


Assuntos
Fumar Cigarros , Neoplasias da Bexiga Urinária , Humanos , Fumar Cigarros/genética , Fatores de Risco , Neoplasias da Bexiga Urinária/genética , Polimorfismo de Nucleotídeo Único , Metilação , RNA , Estudos de Casos e Controles , Proteínas Nucleares/genética
15.
J Agric Food Chem ; 72(3): 1756-1767, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38214269

RESUMO

Antimicrobial packing showed great potential in extending the shelf life of food. However, developing a new biocomposite film with an intelligent and efficient antimicrobial performance is still desirable. Herein, a Fe-MoOx encapsulated with curcumin (Cur) filled chitosan-based composite film (CCF films) was prepared by solvent casting method. The total color differences of the CCF films were less than 30%, and satisfactory surface color, transparency, hydrophobicity, and thermal stability were also obtained. Besides, the UV-light/water/oxygen barrier capability and mechanical properties were enhanced with the incorporation of Cur@Fe-MoOx. Moreover, CCF films showed photothermal performance and thermal-controlled curcumin release ability, which endowed the CCF0.15 film with excellent antibacterial capability toward E. coli (≥99.95%) and S. aureus (≥99.96%) due to the synergistic antibacterial effect. Fe-MoOx exhibited high cell viability and less than 5% hemolysis even under the concentration of 500 µg mL-1. Based on those unique characteristics, the CCF0.15 film was chosen for tangerine preservation. The CCF0.15 film could prolong the shelf life of tangerine by at least 9 days compared with the unpacking group, and the tangerines could maintain the freshness characteristics over a 24 day storage period. Such thermal-mediated antibacterial film proposed by our work showed promising potential in food packaging.


Assuntos
Anti-Infecciosos , Quitosana , Citrus , Curcumina , Escherichia coli , Staphylococcus aureus , Antibacterianos , Embalagem de Alimentos/métodos
16.
Environ Int ; 184: 108443, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277997

RESUMO

Environmental pollutants known as polycyclic aromatic hydrocarbons (PAHs) are produced through the incomplete combustion of organic material. While PAHs have been investigated as genotoxicants, they can also operate through nongenotoxic pathways in estrogen-dependent malignancies, such as breast, cervical and ovarian cancer. However, whether PAHs induce colorectal cancer (CRC) risk through estrogenic effects is still illusive. Here, we systematically investigated the abnormal expression and activation of estrogen receptor beta (ERß) regulated by PAHs in CRC as well as the underlying mechanisms of ERß-mediated CRC risk. Based on the 300 plasma samples from CRC patients and healthy controls detected by GC-MS/MS, we found that the plasma concentrations of benzo[a]pyrene (BaP) were significantly higher in CRC cases than in healthy controls, with significant estrogenic effects. Moreover, histone deacetylase 2 (HDAC2)-induced deacetylation of the promoter decreases ERß expression, which is associated with poor overall survival and advanced tumor stage. The study also revealed that BaP and estradiol (E2) had different carcinogenic effects, with BaP promoting cell proliferation and inhibiting apoptosis, while E2 had the opposite effects. Additionally, this study mapped ERß genomic binding regions by performing ChIP-seq and ATAC-seq and identified genetic variants of rs1411680 and its high linkage disequilibrium SNP rs6477937, which were significantly associated with CRC risk through meta-analysis of two independent Chinese population genome-wide association studies comprising 2,248 cases and 3,173 controls and then validation in a large-scale European population. By integrating data from functional genomics, we validated the regulatory effect of rs6477937 as an ERß binding-disrupting SNP that mediated allele-specific expression of LINC02977 in a long-range chromosomal interaction manner, which was found to be highly expressed in CRC tissues. Overall, this study suggests that the different active effects on ERß by PAHs and endogenous E2 may play a crucial role in the development and progression of CRC and highlights the potential of targeting ERß and its downstream targets for CRC prevention and treatment.


Assuntos
Neoplasias Colorretais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Receptor beta de Estrogênio/genética , Benzo(a)pireno/toxicidade , Estudo de Associação Genômica Ampla , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Estrogênios , Neoplasias Colorretais/genética
17.
Adv Mater ; 36(2): e2304098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689975

RESUMO

Ferroptosis-related cancer therapy is limited by insufficient Fe2+ /Fe3+ redox pair and hydrogen peroxide (H2 O2 ) for producing lethal hydroxyl radicals (·OH). Although exogenous iron or ROS-producing drugs can enhance ferroptosis, exploiting endogenous iron (labile iron pool, LIP) stored in ferritin and promoting ROS generation may be safer. Herein, a metal/drug-free nanomedicine is developed for responsive LIP release and H2 O2 generation on the mitochondria membranes, amplifying hydroxyl radical production to enhance ferroptosis-mediated antitumor effects. A glutathione(GSH)/pH dual activatable fluorinated and cross-linked polyethyleneimine (PEI) with dialdehyde polyethylene glycol layer nanocomplex loaded with MTS-KR-SOD (Mitochondria-targeting-sequence-KillerRed-Superoxide Dismutase) and CRISPR/Cas9-CA IX (Carbonic anhydrase IX (CA IX)) plasmids (FP@MC) are developed for enhanced ferroptosis through endogenous iron de-hijacking and in situ ROS amplification. Two plasmids are constructed to knockdown CA IX and translate KillerRed-SOD recombinant protein specifically on mitochondria membranes, respectively. The CA IX knockdown acidifies the intracellular environment, leading the release of LIP from ferritin as a "flare" to initiate endogenous chemodynamic therapy. Meanwhile, MTS-KR-SOD generates H2 O2 when irradiated by a 590 nm laser to assist chemodynamic therapy, leading to ROS amplification for mitochondria damage and lipid peroxide accumulation. The combined therapeutic effects aggravate cancer ferroptosis and suppress tumor growth, providing a new paradigm for amplifying ROS and iron ions to promote ferroptosis-related cancer therapy.


Assuntos
Ferro , Neoplasias , Humanos , Polietilenoimina , Espécies Reativas de Oxigênio , Ferritinas , Glutationa , Peróxido de Hidrogênio , Radical Hidroxila , Superóxido Dismutase/genética , Genes Neoplásicos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
18.
Cancer Gene Ther ; 31(2): 250-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072969

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is challenging to treat. Virus-like particles (VLPs), originating from JC polyomavirus (JCPyV) and carrying a suicide gene driven by the PSA promoter (PSAtk-VLPs), can inhibit tumor growth in animal models of human prostate cancer. However, the efficacy of suppression of orthotopic PCa growth and metastasis by PSAtk-VLPs remains undetermined. Here, we established an iRFP stable expression CRPC cell line suitable for deep-tissue observation using fluorescence molecular tomography (FMT). These cells were implanted into murine prostate tissue, and PSAtk-VLPs were systemically administered via the tail vein along with the prodrug ganciclovir (GCV), allowing for the real-time observation of orthotopic prostate tumor growth and CRPC tumor metastasis. Our findings demonstrated that systemic PSAtk-VLPs administration with GCV and subsequent FMT scanning facilitated real-time observation of the suppressed growth in mouse iRFP CRPC orthotopic tumors, which further revealed a notable metastasis rate reduction. Systemic PSAtk-VLPs and GCV administration effectively inhibited orthotopic prostate cancer growth and metastasis. These findings suggest the potential of JCPyV VLPs as a promising vector for mCRPC gene therapy. Conclusively, systemically administered JCPyV VLPs carrying a tissue-specific promoter, JCPyV VLPs can protect genes within the bloodstream to be specifically expressed in specific organs.


Assuntos
Vírus JC , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/terapia , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico/metabolismo , Regiões Promotoras Genéticas , Terapia Genética/métodos , Linhagem Celular Tumoral
19.
Cancer Res ; 84(4): 616-625, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117513

RESUMO

Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE: The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.


Assuntos
Neoplasias Pulmonares , Produtos do Tabaco , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Carcinógenos/toxicidade , Carcinogênese , Fatores de Transcrição , Fumar/efeitos adversos
20.
Environ Int ; 183: 108386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134679

RESUMO

Fine particulate matter (PM2.5) is known to enhance DNA damage levels and is involved in respiratory diseases. Exosomes can carry noncoding RNAs, especially long noncoding RNAs (lncRNAs), as regulators of DNA damage, which participate in diseases. However, their role in PM2.5-induced childhood asthma remains unclear. We performed RNA-seq to profile aberrantly expressed exosomal lncRNAs derived from PM2.5-treated human bronchial epithelial (HBE) cell models. The role of exosomal lncRNAs in childhood asthma was determined in a case-control study. The intercellular communication mechanisms of exosomal lncRNA on DNA damage were determined in vitro. Exosomes secreted by PM2.5-treated HBE cells (PM2.5-Exos) could increase the DNA damage levels of recipient HBE cells and promote the expression levels of airway remodeling-related markers in sensitive human bronchial smooth muscle cells (HBSMCs). LncRNA PM2.5-associated exosomal transcript (PAET) was highly expressed in PM2.5-Exos and was associated with PM2.5 exposure in childhood asthma. Mechanistically, exosomal lncRNA PAET promoted methyltransferase-like 3 (METTL3) accumulation by increasing its stability, which stimulated N6-methyladenosine (m6A) modification of cytochrome c oxidase subunit 4I1 (COX4I1), and COX4I1 levels were decreased in a mechanism dependent on the m6A "reader" YTH domain family 3 (YTHDF3). COX4I1 deficiency subsequently disrupted oxidative phosphorylation (OXPHOS), resulting in attenuated adenosine triphosphate (ATP) production and accumulation of reactive oxygen species (ROS), which increased DNA damage levels. This comprehensive study extends the understanding of PM2.5-induced childhood asthma via DNA damage and identifies exosomal lncRNA PAET as a potential target for childhood asthma.


Assuntos
Asma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosforilação Oxidativa , Estudos de Casos e Controles , Material Particulado/farmacologia , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...